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Abstract-A solution of a quasi-steady thermoelastic problem for the elastic convective half-space when a 
heat source with constant power is moving on its surface is obtained. The method of Fourier transformation 
is used for obtaining an analytical expansions for the temperature, the thermal stressses and the displace- 
ments. An asymptotic formula for finding the normal dispalcements of the half-space boundary is 
constructed. Numerical results are presented in the form of figures for the temperature and the normal 

displacements. 

1. INTRODUCTION 

THERE are a number of technological processes in 
which heat exchange is realized simultaneously all 
over the surface with heating ; for example, induction 
heating with high frequency, electrospark alloying, 
etc. To analyse temperature fields and thermal dis- 
tortion of the surface in such processes it is necessary 
to solve a boundary problem of thermoelasticity under 
the condition of heat exchange on all of the surface, 
including below the source [ 11. Of the various methods 
for solving boundary problems of thermoelasticity, 
the most direct is to write down the governing integral 
equations in terms of appropriate Green’s func- 
tions. Several approaches to define these functions 
exist. 

The concept of a sinusoidal temperature wave mov- 
ing uniformly on the surface of an elastic half-space 
together with the use of the thermoelastic potential 
function of displacements are presented in the papers 
of scientific group directed by R. Burton (USA) [2, 
31. The considerable difficulties in the calculation of 
the summation of slowly convergent Fourier’s series 
should be taken as a defect of the method. 

In ref. [4], on the basis of the solution of a thermal 
conduction problem for a momentary heat source act- 
ing on the surface of elastic half-space [5], analytical 
expressions of quasi-steady-space displacements and 
tangential stresses suitable for the arbitrary values 
of Peclet’s parameter were obtained. Corresponding 
values inside the half-space were found in ref. [6]. 

An asymptotic solution for large (> 10) Peclet num- 
bers determining the distribution of heat flux in each 
contacting body has been constructed in ref. [7]. The 

application of the finite-element method to this aim 
has been realized in ref. [8]. 

In all of the aforementioned articles it is assumed 
that the surface of the half-space outside the heat area 
is heat insulated. The solution of the quasi-steady 
problem for a heat source moving uniformly on the 
boundary of the half-space, taking into account heat 
exchange with the outward environment by Newton’s 
law, has been obtained in ref. [9]. Corresponding ther- 
mal stresses and displacements in the case of large 
Peclet numbers were determined in ref. [lo]. 

The approximate significances of temperature and 
displacements in the elastic half-space heated by a 
heat source moving uniformly on its boundary with 
the heat flux distributing on the final segment were 
found in ref. [l l] on the basis of the integral characters 
method [12]. 

The aim of the present article is the development of 
the methods offered in refs. [6, 91 to find fundamental 
and thermoelastic solutions for a line of heat sources 
with constant power (plane strain) moving with a 
constant velocity on the,elastic half-space surface. The 
problem is formulated in the limits of classic linear 
thermoelastic theory. It is assumed that the material 
of the half-space is homogeneous and isotropic, and 
its physical properties do not depend on temperature. 
We neglect inertial effects and the influence of thermo- 
elastic coupling. 

2. THERMAL-CONDUCTION PROBLEM 

With the given assumptions, the thermal-con- 
duction equation in the coordinate axes xOy rigidly 
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NOMENCLATURE 

h coefficient of heat exchange Greek symbols 
k thermal diffusivity ET coefficient of linear temperature 
K thermal conductivity expansion 
e intensity of heat flux generation a = r/S 

i(x, y, s) 
(x2 +y2)‘12, equation (3) B = V/k 
function defined in equation ( 15) = h/K 

3, so values defined in equations (12) and i(x) Dirac function 
(13) A a2/a2 + a2/ay2, Laplace operator 

T(x, y) temperature V(l) function defined in equation (5) 
T*(x, Y) dimensionless temperature, p shear modulus 

equation ( 19) Poisson ratio 
T, = aiyax ; parameter of Fourier integral 

r, = aTlay transform 
4 v displacements Q,, ay, o,~ components of temperature 
V velocity of the moving heat source stresses 
%Y Cartesian coordinate pair cp Airy function 
x stress function. Y potential of displacements. 

connected with a source moving with constant velocity 
V on the boundary y = 0 of the half-space has the 
form 

AT+fl7-,=O ]x]<co y>O. (1) 

We construct the solution of differential equation (l), 
satisfying the boundary conditions 

KT,--hT= -Qs(x) 1x1 < co y = 0, (2) 

T, T,,, T, + 0 when r = (x2 + y2)‘12 + co. (3) 

Applying Fourier integral transforms with respect to 
x to equation (1) and boundary conditions (2), (3) 
gives 

m l”(& Y) = (24 - “2 
s 

T(x, Y) 
-cc 

x exp (-ilx) dx Ix] < co y > 0, (4) 

and we obtain 

Ty.V-t12T= 0 ~(0 = J(c’-$8 Y 2 0, (5) 

KT,,-hT= (27~)“~Q y = 0. (6) 

The solution of the differential equation (5) with con- 
dition (6) has the form 

Q ev I- ytl(t)l 
‘(“‘) = J(2x)K r+s(<) (7) 

By means of Fourier integral transformation 

T(x, y) = (27~)-“~ 
f 

O” r(& Y) exp (it4 d5 (8) 
-m 

and from equation (7) we see that 

T(x,Y) = SK s m 
-m 

Ix1 < co y 2 0. (9) 

In relationship (9) for the satisfaction of conditions 
(3) a positive branch of the function of many figures 
n(r) was chosen. 

We present solution (9) in the form 

T(x, y) = FK Re T* 

= %Re (I m exp [-yv(t)+i5xl d5 . (10) 

0 Y+rl(r) > 

In expression (10) the integral may be simplified if we 
use integration along the closed loops [6] : 

1-* =L*uc~uc+uIuc, (11) 

as is plotted in Fig. 1. Here indices ‘ f ’ mean inte- 
gration along the curve f+ at x > 0 and f- when 
x < 0. The integrand in relation (10) is analytical 
inside I*. The branch points are l = 0 and 5 = i/3; 
corresponding sections have been conducted along 
negative real and postive imaginary axes in such a way 
that a branch of the function I receives a positive 
significance on the positive part of the real axis. 

Integrals along C$ and C, at R -+ co and E + 0 are 
equal to zero. On the curves C* an argument of the 
exponential function in the integrand (10) receives a 
real negative value - s, where 

s = yn(t)-i[x so <s < co, (12) 

so = o.sg(x+J(x’ +y2)). (13) 
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FIG. 1. Contour of integration. 

From (12) we see that along the curves C * the variable 
{ takes the meaning 

T(s) = 
i(/?y* + 2~s) +yJ(4s* - 4j3xs - fl*y*) 

2(x2 +y*) 

while on the axis Im 5 we have 

{(so) = OSifl[l +x(x* +y*)-“*I < i/I at y > 0. 

(14) 

On the segment Z, where c = ir, 0 < E < r < f&,)/i, 
the integral (10) takes a wholly imaginary value and, 
therefore, cannot give a contribution to T(x, y). 

Thus on the basis of the Cauchy theorem, as a result 
of integration along the contours I* (11) from (10) 
we find the temperature in an arbitrary point of half- 
space 

TkY) = g s m &,~,s)exp(-4 
so J(4? -4/?xs-/12y2) ds 

1x1 < 03 y 2 0 

&X,Y,S) = 
2(s2 - /.Ixs) + yJ(2s - /Ix) 

2[s2 -j?xs+yy(2s-f?x)+r2(x2 +y2)1 

(15) 
Supposing in (15) s* = s+s,,, we obtain definitively 
(we omit asterisks) 

T(w) = $jexp (-so) s Oc W-T Y, 4 exp (-4 ds 

0 J[s’ + (2s, - jx)sl 

R(x,y,s) = lqx,(x,,s+s,) = 
s* +n,s+b, 

s2+a,s+b, 

aI = Br+w, a2 = Br+h, 

b, = (BY/~)* +YBY~P, 62 = W2)* +yPyr+y*r*. 

(16) 

We consider two known property cases of solu- 
tion (16). Let h = 0, y 2 0. Then y = 0, R(x, y, s) = 1 
and 

TM9 = -$exp(-so) s m exp(-s)ds 

0 J[s’ + (2% - Bx)s] . 

(17) 

By means of formula 3.364.3 in ref. [13] we can cal- 
culate the integral in relation (17). We have 

s m exp(-s)ds 
= exp (P/2)& (P/2) 

0 J[s’ + (2so - Bx)sl 

and the temperature of half-space, when the heat 
source moves uniformly on its insulated surface, is 

T&Y) = $exp(-flx/2)Ko(8r/2). (18) 

Relation (18) was first obtained in article [5]. Ko(*) is 
a modified Bessel function of the second kind. 

Let h # 0, y = 0. Then, from (13) we have that 
so = Bx at x > 0 and so = 0 at x < 0. The function 
R(x, y, s) has the form 

m, Y, 4 = 
s* +Blxls 

s* +~Ixls+y*x* 

and the temperature of the boundary points of the 
convective cooling half-space is 

T(x,O) = -&exp(-so) 
I 

m,/(s2+/IIxIs)exp(-s)ds 

0 s* +~Ixls+y2x2 

= 9 T*(x, 0) 

= -$exp(-so) 
s 

m ,/(s’+s)exp[-Blxls]ds 

0 s* +s+cr* 

a = r/B. (19) 

Relation (19) coincides completely with the results of 
article [9]. 

3. THERMOEIASTIC PROBLEM 

The components of temperature stresses are pre- 
sented through the Airy function @ and the ther- 
moelastic potential of displacements Y in the form 
v41 

Qx = x, 0, = x,x.x axv = - x., (20) 

x E @--2/M. (21) 

We obtain functions CD and Y from the solution of the 
boundary thermoelastic problem : 

AA@=0 AY=NT (xl<03 ~30 (22) 

a,(x, 0) = a,(x, 0) = 0 1x1 < co (23) 
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a,,ay,a,+O at r+co. (24) 

Here N = (1 +~)a,/(1 -v). 
Equations (22)-(24) are transformed in the trans- 

form space (4) of the Fourier integral transformation 
with respect to variable x : 

($_+,=o ($-(')p=Ni, (25) 

6,(5,0) = a,(4,0) = 0. (26) 
Usually the infinite solutions of the differential equa- 
tions (25) and (26) have the form 

&(C?Y) =~L-l+Y(-IcI+)1(5))1 

xexp(-YKl)r((5,0), 

V5,Y) = -$exp(-YM)T(&O) (27) 

where T is the Fourier transform of the temperature 
T (12). On the basis of (27) we find the Fourier trans- 
formation of the Airy function (21) 

J?l,Y) = - ~i~~-~~-l~/+tl~S~~l~~p~-~l51~ 

-ew [-MOI~ % 0). (28) 
We introduce the function 

L = L, +ye2 + L), (2% 

where 

L,(x,Y) = FKReL?(x,Y) 

exp I- CXY - WI dt 
5b+v(5)1 (30) 

&(x,Y) = $ReL:(x,y) 

(31) 

“ex1~[-5(~--ix)ld5 
Y + ?(1;) (32) 

M(x,y) = -$Re M*(x,Y) 

exp t --.w(5) + it4 d5 
5b+tl(l;N 

(33) 

Applying the inversion formula of the Fourier integral 
transform (8) to relationship (28), and taking into 
consideration equations (28)-(33), we obtain 

(34) 

From formula (34) it follows that the stress function 
X is a sum of two integrals. The first of them, L, 
corresponds to a biharmonic function @ and has the 
form of transformation of the Laplace integral trans- 
form with respect to variable 5 of some function at 
y > 0. The second integral, M, is connected with the 
thermoelastic displacements potential Y : 

Y(x,y) = $hX,Y) 

where 

M,x = T M,, = - T,, - PT. (36) 

We denote 

4. STRESSES 

Y(LT.xx +L:Jx) = S, 2 

iLTx = LT,Y = LT.,, = -Ly,, = -iLy,,, = S2, 

L:, = -iL* = S 2.y - 3. (37) 

Differentiating the stress function X (34) according to 
equation (20), and taking into account relations (35)- 
(37), we find 

a, = N, Re(-S,+S2+2i&-/?T*-TS;) 

a,, = N, Re (S, + S2 + T,:) 

gxy = -N, Re (is, + S3 + T.;) N, = 2pNQ(d@)-‘ . 

(38) 

We note that at Y = 0 from (38) it follows that 
a, = a_+ = 0. 

5. DISPLACEMENTS 

Elastic displacements are connected with tem- 
perature stresses by the formulae of Duamel-Nayman 
[151 

2~u,~ = (1 - v)a, - vay + 2~( 1 + v)crT T 

2pv,, = (1 -v)a.V-va,+2p(1 +v)ccTT. (3% 

Substituting the value of stresses (38) into the right- 
hand sides of (39), and integrating with respect to x 
and Y accordingly, we obtain 

u = N2 Re ((1 -v)i[2L:+ L:+yL&] -vL.$- T*} 

v = N,Re{(l-v)[L:+2L:-yLf,]-vLz,--M$}. 

(40) 

Here 

N2 = N,/(2p) L& = S2 +iS, 

L*, = is, -iyL& L: = Lf+yLf,. 



6. FINDING OF THE FUNCTIONS L;, L$ AND M’Jy 

It follows from (38) and (40) that the components 
of the tensor of temperature stresses and the vector of 
displacements may be expressed through the functions 
L:, L:, T*, their derivatives, and also the integral M,;. 
The temperature T* in any point of the half- 
space is given by formula (16). Now we consider inte- 
grals L:,j = 2,3 ((31) and (32)). We denote 

Lf = i 
s 

exp(-s)ds 

ow J(s*-ij(y-ix)s). 
W) 

We note that function LT, although non-limited, is 
differentiated. By means of formula (13) from p. 128 
of ref. [16] we calculate the integral in relation (44) : 

LT = i exp[-i/3(y-ix)/2]&[-$(y-ix)/2]. 

s = ((y-ix), 

2s: = f (? -flxs) + J[(s’ -/!?xs)’ + B’y’]. 

Then 

Taking into account [ 171 

J(t’ -ifi<) = e 

K,(z) = 0.5niH$1’(iz) -n<arg(z)<O 

and from (44) we find 

Lf = -0.5nexp[-i/Q--ix)/2]Hb”[fl(y-ix)/2]. 

(45) 

and functions L:, LT have the form of transformation 
of the integral Laplace transform with transform par- 
ameter p = 1 : 

s 

cc 

Lj*(x, Y) = t,(x, y, s) ems ds Li = A,lD j = 2,3 
0 

H#’ is a Hankel function. 
The real part of the function M3 at y = 0, y # 0 

from (41) has the form 

sA2 = y(xs+ -ys_)-i[s+(s+ +yy)+s_(s_ +yx)] 

A3 = -(s_ +yx)+i(s+ +Yy) 

D = (s++yy)*+(s_ +Yx)*. (41) 

According to (33) the integral MJ is 

ReM* = -E+pexp(-s) *Y 2 2 !I 

m 
X 

I 

exp(-s)ds 

o (s+sr,) J[s” +(2s, -/?x)s] 

m MJ=i 
s 

~(0 exp [--rrl(T) +irx)l d5 
0 UY + dt31 

= -; +cos-’ (x,r)-- 4 

x 
I 

’ exp (- /?xs/2)& (/h/2) ds (46) 
II 

which we shall reduce to a form comfortable for cal- 
culations with the help of integration along the closed 
curves (11). We obtain 

IV;= 
s 

cc 
M,& Y, s) exp ( -s) ds 

$0 

M.&G Y, 4 = 

Formulae (45), (46) were obtained for the first time 
in ref. [6]. 

If y # 0 and y = 0 then from (41) we obtain 

(--r5- +i(tt +C2 +yt+))(J(4s* -4/l=-fl*r*)--iby) 

s((y+r:)+52)J(4s*-4flXs-B2y2) 

Lf= -i tl 
[s 

’ J(s-s’)exp(-/?xs)ds 

0 s(?-s+a2) 

+ m(s-l)exp(-Bxs)ds 

5: =Y(ww ,t_ = xJ(4s2 -4w-B*Y*) s 0 s* -s+a* 1 
+ 2(x2 +y2) 2(x2 +y*) 

+crexp(-fix) m 
I 

exp ( - fixs) d.s 

0 J(s* +s)(s* +s+a*) 

ifx > 0 

J(t’-i8t;) = 5, +it_. (42) 

If the surface of half-space is insulated (h = 0, y = 0), 
then from (41) it follows that 

t2 = -is-’ J?, = i[s’-$(y-ix)s]-I’*. 

Hence 

Lf= -i “exp(-s)ds 

s 

“ew[-5(y-iddt = -_1 
0 S s 0 t 

ds = -, 
-s 

- = -i In (s)ly”ix 
y-ix S 

s 

ICI Lz= -i (s- 1) exp (-/?lxls) ds 

II s* -s+cY* 

s m (s+ 1) exp (-Blxls) ds _a 
o J(s2 +s)(s* +s+cr*) 

ifx < 0. (47) 

(43) 
For the function L: the corresponding functions will 
take the fbrm 
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Lf= - s I exp ( - flx.r) ds 

cl &2+s)+tl 

m 
-aexp(-bx) 

s 

exp ( - fixs) ds 

0 s2 +s+a’ 

+iexp(-Bx) 
s 

m J(s2 + s) exp (- bxs) ds 

cl s2 +s+a2 

ifx>O (48) 

and 

L: = 1 
s 

“J(s2+S)exp(-Blxls)ds 

II s2 +$+a2 

+a 
s 

“exp(-Blxls)ds ifx < o, 
0 s2 +s+a’ 

The real part of the function M$ in the present case 
is 

ReMz = -LT. (49) 

7. ASYMPTOTIC BEHAVIOUR 

We shall find a normal thermal displacement of the 
surface of a half-space. From (40) we have 

u(x,O) = 2(1-v)N, Re[L:+L$]. (50) 

Hence, in view of formulae (47)-(49), we obtain 

u(x, 0) = 2(1- V)N, V(x) (51) 

V(x) = H(x) 

V+(x) = s m (s-,/J(s’+s))exp(-/?xs)ds 

J(s2 +s)(s’ +s+a2) 
(53) 

cl 

V_(x) = s m (,/(s’+s)-s-l)exp@xs)ds 
(54) 

0 J(s2 +s)(s2 +s+a2) 

Integrands in expressions (53) and (54) are rapidly 
convergent at s -+ co, because the main contribution 
to V+(x) will be determined by the conduct of this 
function in the vicinity of zero. Considering that 
0 < s < 6,6 << 1, and a < JS, we find 

V+(x) = J,(x, 4 -J, (x, a), 

v- (x) N J, (x, 6) -.I, (x, 6) - .I3 (x, 6). (55) 

Here 

J,(x,6) = ln)a2+6]-lnja2j+/Qxj 

x [6-a’ln Ia2 +61 +a2 In ]a’j] 

J2(x,6) = 2[6-atan-’ (6”‘/a)] 

+2/?]~][6~/~/3-a~6”~ +a3 tan-’ (6’j2/a)] 

J3(x, 6) = 2 tan-’ (P2/aj/a 

+2j]x] [b-a tan-’ (a”‘/a)]. (56) 

At a + 0 from relations (55) and (56) it follows that 
V+(x) = 0, V_(x) = -n/a. Since [13] 

5 ’ ew (-Blxls) h 
0 Jcs-2) 

= next (-Bx/Wo(B14/2) 

then 

V(x) = 
i 

new (-B42YdBlxl/2) x > 0 
x x<o. 

(57) 

lo(*) is a modified Bessel function of the first kind. 
At V(x) relation (51) determined by formula (57) 
coincides completely with the result given in ref. [4]. 

8. NUMERICAL ANALYSIS 

The dependence of the distribution of non-dimen- 
sionalized temperature T*(x,O) of the elastic half- 
space surface calculated by formula (19) on the dimen- 
sionless parameter fix at a = 0.01, 0.1, 1, 10 is shown 
in Fig. 2. We see that with the growth of heating from 
the surface of a half-limited body its temperature falls. 
We note also that presented by the curve a = 0.01 the 
results coincide with the facts, obtained by formula 
(18), to within 10d4 in the case where the surface y = 0 
of the half-space is insulated. 

The dependence of the change of the dimensionless 
normal displacement V(x) of the boundary of the 
half-space, found by the formulae (51)-(54), on /3x is 
presented in Fig. 3. The results, presented by dotted 
segments, have been obtained by calculation of for- 
mula (57). It is seen that the value a of order 0.01 
leads to results little distinguished from the case of the 
insulated surface of the half-space. It should be noted 
that, at small (of order 0.1 and less) values of the 
parameter a, in order to calculate normal dis- 

T’ 
4r 

2 JL, a = 0.01 0.1 
1 

0.1 1.0 
a = 0.01 

1g 10 ‘. 

-3 -2 -1 0 1 2 3 

BX 

FIG. 2. Variations of dimensionless temperature T* with /Ix 
for four values of parameter a = 0.01, 0.1, 1, 10. 
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FIG. 3. The change of the normal displacements V(x) of the 
boundary of the half-space with px for a = 0.01, 0.1, 1, 10. 

V 
4 r 

-3 -2 -1 0 1 2 3 

‘(x 

FIG. 4. The change of V(x) with yx for a = 0.01, 0.1, 1, 10. 

placements we can use the asymptotic relations (52), 
(55) and (56). 

The dependence of the change of V(x) on the dimen- 
sionless parameter yx is plotted in Fig. 4. In the pres- 
ence of convective heating at the entrance of the input 
zone (x < 0), the behaviour of temperature dis- 
placements of the surface of the half-plane differs from 
that of displacements at y = 0. In ref. [l] it was shown 
that with the increase of velocity for h = 0 the thermal 
conductivity before the source becomes less effective 
and the displacements fall in the input zone. It is 
ascertained that the thermal distortions in the input 

zone increase with the growth of /?. At x > 0 the dis- 
placements increase with decrease of the moving 
source velocity. At tl < 0.1 it is possible to make the 
calculation using formula (57). Here with the growth 
of parameter j3 (2 10) the conduct of displacements 
V(x) may be approximated by the Heavyside function 
H( - x) with greater accuracy. 
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